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A modified version of the Watts-Strogatz (WS) network model is proposed, in which the number of shortcuts
scales with the network size N as N¢, with a<<1. In these networks, the ratio of the number of shortcuts to the
network size approaches zero as N— o, whereas in the original WS model, this ratio is constant. We call such
networks “thin Watts-Strogatz networks.” We show that even though the fraction of shortcuts becomes van-
ishingly small for large networks, they still cause a kind of small-world effect, in the sense that the length L of
the network increases sublinearly with the size. We develop a mean-field theory for these networks, which
predicts that the length scales as N'~%In N for large N. We also study how a search using only local information
works in thin WS networks. We find that the search performance is enhanced compared to the regular network,
and we predict that the search time 7 scales as N'~%2. These theoretical results are tested using numerical
simulations. We comment on the possible relevance of thin WS networks for the design of high-performance

low-cost communication networks.
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The mathematical model for a small-world network pro-
posed in the seminal paper by Watts and Strogatz [1,2]
sparked a widespread interest on the subject of complex net-
works (for reviews, see Refs. [3-5]). Their model, known as
the Watts-Strogatz (WS) model, consists of a network in
which the nodes are arranged on a ring, every node being
initially connected to its 2k nearest neighbors (k on each
side). The WS network is generated by letting each link have
a probability p of being rewired randomly, so that it may
connect to any other node on the ring with uniform probabil-
ity. This means that besides the local connections, there are a
number n,. of shortcuts, that is, links connecting pairs of
randomly chosen nodes on the ring. The shortcuts are non-
local, long-range connections. An important parameter in this
model is the ratio S=n,./N of the number of shortcuts to the
total number of nodes N. The shortcut links represent a kind
of topological disorder that exists alongside the regularity of
the local connections. The case 8=0 is the regular ring net-
work, and B—k is the limit of a very disordered network.
Intermediate values of B correspond to networks in between
these two extremes, partly regular and partly disordered. A
crucial quantity is the length L, the average shortest path
connecting two nodes in the network. In other words, L mea-
sures how many hops one has to do, on average, to move
from one node to another. It can be shown that, for any
constant nonzero S, L increases with the number of nodes N
as [6]

L~InN. (1)

This slow increase of the length with the network size means
that even in very large networks, it takes typically only a few
hops to connect any two nodes; this is what is commonly
referred to as the so-called small-world phenomenon. This
happens even if B is very small (but nonzero), so that even a
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very small number of shortcuts (compared to the total num-
ber of links) is enough to cause the small-world effect, as
long as 8 does not vanish as N increases.

The result (1) holds if the shortcut fraction (3 is a constant
greater than zero. If we consider a family of WS networks
with increasing size N, a constant 8 corresponds to the short-
cut number ng, increasing linearly with N, n,.~ N. But what
happens if the number of shortcuts increases more slowly
than the network size? A simple instance of this is . scaling
as a power of N,

ng. ~ N°. (2)

For 0<a <1, even though the number of shortcuts goes to
infinity in the “thermodynamic limit” N — o, the fraction of
shortcuts scales as

B~ ng /N~ N*!, (3)

and therefore S— 0 for N— . This means that the shortcuts
become infinitely sparse in these networks, as their size
grows. We call these networks “thin Watts-Strogatz net-
works,” or “thin WS networks” for short. The goal of this
paper is to study the statistical properties of these networks,
and in particular to study how the length depends on the size,
for a given value of the parameter a. One could think that,
since the fraction of the shortcuts approaches zero for large
N, the length would scale linearly with N, as is the case for
regular networks. By using a mean-field approach, however,
we show that L scales in fact as L~N'""%In N. Thus, the
length increases more slowly than linearly, although not as
slowly as the pure logarithmic growth of the original WS
model. This means that the presence of the shortcuts has
dramatic effects on the network connectivity, even though
their fraction becomes vanishingly small for large N. We also
investigate the dynamics of a local search on thin WS net-
works. We find that the search time decreases with N faster
than for the regular network, showing that the vanishing
fraction of shortcuts also has an important effect in the dy-
namical processes that take place on these networks.
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We first very briefly review the version of the Watts-
Strogatz network we use in this paper [6,7]. The skeleton of
the WS network is a regular network in which the nodes are
arranged on a ring, with the neighboring nodes being con-
nected. In the general model, the nodes are connected to its
2k nearest neighbors, but we shall consider throughout this
paper only the simplest case in which there are links only to
the nearest neighbors (k=1); the results we obtain are inde-
pendent of the precise value of k. Besides these local con-
nections, there are also random long-range connections,
called shortcuts. These are links connecting randomly chosen
pairs of nodes, which we add to the ring, as opposed to
rewiring, as in the original WS model [7]. We denote the
number of such shortcuts by n,., and the ratio n,/N of the
number of shortcuts to the number of nodes by B. For a
constant nonzero f3, it is known that the mean average path
length L increases logarithmically with N. Using a mean-
field model, Newman et al. [6] found an analytical expres-
sion for L,

L~ [lg In(BN). (4)

This approximation is valid for large N and for a large num-
ber of shortcuts, n,=BN>1.

We first consider a theory for the scaling of the length in
thin WS networks. Assuming that the number of shortcuts n,,
scales as a power law with the number of nodes N, as in Eq.
(2), the scaling of the fraction of shortcuts B is given by Eq.
(3). Therefore, B8— 0 for large N if @<1. In the limit of large
network sizes, the fraction of shortcuts vanishes, even
though their number still diverges, as seen from Eq. (2).

To obtain a mean-field model for the case where B is not
constant, but instead depends on the network size N accord-
ing to Eq. (3), we just have to realize that Eq. (4) is still valid
even with a nonconstant 3, as long as the total number of
shortcuts n,. diverges as N—o. From Eq. (2), we see that
this condition is fulfilled for any «@>0. Substituting Eq. (3)
in Eq. (4), we find the following scaling law for the length:

L~N"%InN. (5)

This expression predicts a power-law behavior for L with a
multiplicative logarithmic correction for thin WS networks
(a@<1), and a pure logarithmic behavior for the usual case
B=const, as it should. In order to test this prediction, we
simulate WS networks with different sizes, with a number of
shortcuts between randomly chosen nodes following Eq. (2).
The length L is computed and plotted as a function of N. The
result is shown in Fig. 1, for three different values of «. The
result of nonlinear fitting of the data to Eq. (5) is also dis-
played in the figure, and it shows a good agreement with the
predicted values of «, albeit with small deviations, especially
for small a. These small but consistent deviations may be
due to finite-size effects.

In a completely regular network, with no shortcuts, the
length increases linearly with size, L~ N. The result of the
mean-field theory, given by Eq. (5) and tested in Fig. 1,
shows that L increases more slowly with N in thin WS net-
works than in regular ones, even though the fraction B of
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FIG. 1. Length L as a function of the number N of nodes of
Watts-Strogatz networks. Diamonds correspond to a=0.3, squares
to a=0.5, and circles to @=0.8. Each data point is the average of
the length over 20 realizations of the networks. The continuous
lines are the result of nonlinear fitting of the data to the function
L=const X N”In N. The fitting gives y=0.66 for a=0.3 (compared
to a predicted value of 0.7); y=0.47 for a=0.5 (predicted value:
0.5); and y=0.19 for a=0.8 (predicted value: 0.2). The predicted
values, from Eq. (5), are given by y=1-a.

long-range links goes to zero for large sizes: B—0 for
N—oo, if @<l. In other words, despite the fact that in the
thermodynamic limit of large N the fraction of shortcuts is
negligible, their presence has major consequences for the
topology of the network, giving rise to a kind of small-world
effect, in which the length scales as a power law of the
network size, as opposed to the logarithmic scaling found in
usual small worlds with constant 8. This means that in thin
WS networks, the length increases more rapidly with size
than in the usual WS networks, and thus the small-world
effect is less pronounced. It is nevertheless remarkable that
any small-world effect occurs at all for a vanishing fraction
of shortcuts. If each link has a cost attached to it, Eq. (5)
implies that one can build a network with almost the same
cost of a regular network (in the limit of large network sizes),
but with a much better connectivity (measured by the length
L). This could be important in the design of communication
networks, for example, especially if shortcuts are more ex-
pensive than local connections, which is a good assumption
in networks like the Internet.

We have also investigated the dynamics of local search in
thin WS networks. In a local search, one starts from some
node in the network, and by following the links tries to find
some target node. It is assumed that the topology of the
network is not perfectly known, and that the searcher can
only see its immediate neighborhood. Previous works have
shown [8-15] that the average time it takes to reach the
target node, the search time 7, does not in general follow the
same scaling as the length L. The reason is that the lack of
complete information about the network topology results in
nonoptimal paths from the beginning node to the target. In
Ref. [14], this problem was studied in the usual Watts-
Strogatz small-world network (constant 8). The search pro-
cedure used there was as follows [14]. One starts at a ran-
domly chosen node, and wants to reach a target node (also
picked at random). One of the neighbors of the current node
is chosen to hop to. The chosen node is the one that appears
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FIG. 2. Search time 7 as a function of the network size N, for
thin WS networks. The diamonds are the results of numerical simu-
lation with «=0.3, the squares are data for a=0.5, and the circles
are data for @=0.8. Each point is obtained from the average of the
search time over 20 networks with the shortcuts randomly chosen,
corresponding to the same a and N, and the search time of each
individual network is the average over 200 searches, with initial and
target nodes chosen randomly. The continuous line is the result of
fitting the numerical data to a power law 7~N?. The values of y
found by fitting are y=0.86 for «=0.3 (the predicted value is 0.85);
v=0.77 for a=0.5 (the predicted value is 0.75); and y=0.62 for
a=0.8 (the predicted value is 0.6). From Eq. (7), the predicted
values are y=1-a/2.

to be closest to the target node, according to a metric defined
on the network, which embodies an imperfect knowledge
about the global network structure. This metric gives a clue
as to how near or how far we are from the target, without
being a perfect guide. In Watts-Strogatz networks, the natural
metric is just the separation along the ring. One thus hops to
the neighboring node that is closest to the target in the sense
that it takes the smallest number of hops along the neighbors
on the ring to get there. The process is repeated until the
target is reached. Using a mean-field approximation to this
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dynamics, it was found [14] that the search time 7 scales
with N and B as [14]

. (%>1/2. ©

This result is valid for a large network size (N> 1), a small
shortcut fraction (8<<1), and a large number of shortcuts
(NB>1) [14]. All these conditions are satisfied for thin WS
networks of large size, as Egs. (2) and (3) show. Therefore,
the above expression is also valid for thin WS networks, with
B given by Eq. (3). Making this substitution, we get

7~ N'"2, (7)

For a=1 we recover the N/ scaling of usual WS networks.
For thin WS networks (a<<1), 7increases faster with N than
for usual small worlds, as expected. However, 7 still in-
creases more slowly than linearly, as long as a>0. This
means that even though as N— oo the shortcut fraction van-
ishes, this vanishing fraction causes a considerable decrease
in the search time, making it grow sublinearly with N. We
have simulated this search process in thin WS networks of
different sizes, according to the search algorithm described
in detail in Ref. 14. The results are plotted in Fig. 2, and the
scaling of 7 with N found by fitting agrees well with the
prediction of Eq. (7).

This result shows that not only static topological features
have nontrivial behavior in thin WS networks: dynamical
processes taking place on the network are also substantially
affected by the vanishing fraction of shortcut links. Again,
this might have important consequences for the design of
communication networks and other artificial networks, be-
cause it implies that it is possible to build low-cost networks
with a small number of long-range links which have a much
better performance than an equivalent totally regular net-
work.
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